
  Bridging the
Gap Between
Dev and Ops

A practical guide to more
efficient, successful projects
using DevOps best practices.

Bridging the Gap Between
Dev and OpsWhy Should I Care

About DevOps?
then the careful prep they applied as they masked around windows and trim,

using craft paper to cover larger areas and just basically doing most of the

things I never think to do when tackling a weekend bedroom paint job with

my wife. My checklist is a paint brush, a drop cloth, a roller and a can of paint.

And so I don’t wonder why the pros’ results turn out so much better than

mine.

That professional painting project is a pretty good comparison to

establishing good DevOps practices. DevOps is the careful preparation, best

practices, systems and the right tools that combine to propel a development

project from the possibility of disorganization, unplanned wrong turns and

mayhem to a more accurate, professional development experience for

everyone involved. Much like the painting prep process, DevOps can look like

a lot of extra time and effort up front and it can seem like an unnecessary

bother to the uninformed. It often isn’t until you are deep into the project

that problems start showing up, milestones get missed, and cost overages

set in that could easily have been avoided with the proper DevOps systems in

place. But with DevOps you will see significant improvement in efficiency,

cost savings and quality of the end product. We are not here to suggest that

DevOps is easy. It isn’t, just like true Agile Scrum isn’t easy. But we promise

the many benefits and rewards are well worth the extra effort.

DevOps…You see it everywhere these days and read

about it in blogs. It’s a sexy term. But we’ve noticed

there is a lot of misinformation out there. So we

wanted to provide this easy-to-consume guide to

DevOps to set the record straight. Similar to the term

Agile Scrum, which is often touted by development

shops that say “we do Agile Scrum”, when it’s really

more like "mini waterfalling” (we call it fake Agile).

And so when a company is led down a path of “fake

DevOps” and the project runs into problems, many

adopt the philosophy of “I tried DevOps and it failed

miserably.” That’s really unfortunate because we get

to see the power and successful outcomes of

projects that implement strong DevOps practices

every day here at nimBOLD.

I recently had the interior of my house painted and it

struck me how seriously the professional painters took

the prep process. Whereas I would certainly throw down a

drop cloth over my furniture and floors, these painters

took a significant amount of time to meticulously tape

down plastic sheeting to every inch of my flooring, and

Bridging the Gap Between
Dev and Ops

 
Set Up an Environment of
Shared Responsibility

Wouldn’t it be great if your development team

knew the pain points of your operations team?

Or what if your product team was constantly

aware of the challenges your development team

was facing? How would it change the way your

business runs if each team was aware of each

other’s pain points and were able to help

mitigate those issues before they even became

a problem?

It has long been common knowledge that

marketing and sales tend to work in silos, which

is detrimental to both parties, and in turn, the

company as a whole. While it has also been going

on for some time, companies now need to be

hyper aware of the silos that specifically affect

development, because as customers demand

more from technology/software in a rapidly

evolving industry, collaboration and clear

communication across the organization is

paramount to success. We need to break down

these traditional silos within software

development that historically made it acceptable

for teams to be disinterested in challenges

outside of their circle.

Shared responsibility is a cornerstone mindset

where we employ techniques to break down

these silos in order to foster collaboration and

clear communication between disciplines and

teams. This allows teams to iterate effectively,

addressing needs across all stages of

development lifecycles, and ultimately

improving the quality of your software.

This is not a change that will happen overnight.

Depending on your company culture, there are

many layers of how ingrained this type of

thinking has become. Setting up an environment

of shared responsibility will be a mindset and

cultural shift, and it takes coaching, planning,

and most importantly, discipline.

Bridging the Gap Between
Dev and Ops

1

We need to break
down these
traditional silos
within software
development that
historically made
it acceptable for
teams to be
disinterested in
challenges
outside of their
circle.

Bridging the Gap Between
Dev and Ops

 2

Once you have started the journey towards

breaking down silos and embracing Shared

Responsibility, you have taken the first steps

towards effective collaboration! While people

are ultimately at the center of DevOps and

collaboration, processes and tools need to be

put in place to strategically facilitate this

collaboration.

However, these are not one-size-fits-all, which

is a common mistake to avoid. Looking at

another organization you think might be similar

to yours and implementing the same processes

and tools they have chosen will most likely not

produce the same results. They need to be tailor

fit to the needs of your unique organization and

teams, such as your Product team,

Development, Ops, QA, and more. Furthermore,

they should also foster collaboration across

teams, not just within one team or another.

Enable Collaboration Through Proper
Implementation of Processes and Tools

Bridging the Gap Between
Dev and Ops

Processes and
tools are not a
one-size-fits-all
solution.

Bridging the Gap Between
Dev and Ops

 

• How should we run our Agile teams?

• How many sprints will be involved?

• What project management tool will be right for us?

Some popular choices are AzureDevOps, Jira and Trello, just to

name a few

• What project portfolio tool(s) do we need to implement?

Is Microsoft Project or Asana our best bet? Or should we

consider other options as well?

• What source control tools will we utilize?

Take a look at Gitlab, Github, BitBucket, AzureDevOps, and more

• What is my release management story?

Depending on the complexity of your software and your teams,

there are different release strategies to manage your releases

efficiently.

Choosing the wrong one could cause lots of pain for your teams,

and cause risks to the releases of your product. However, a good

strategy tailored to your team can not only mitigate these, but

allow your team(s) to be more efficient.

• What document sharing/management tool will we use?

As your teams collaborate, you will want to be able to EASILY

share and manage any artifacts that come out of discussions

(meeting minutes, diagrams, process flows, etc.), so that all

involved parties can easily access these documents for

reference. Several tools can be used for this (Sharepoint,

OneDrive, DropBox, GoogleDrive), but it is important to choose

the tool that is most convenient for your team(s), while also

remaining secure.

Some Important Questions To Consider and Evaluate Are:

Taking the time to think through these processes and more, while also researching and comparing all of the available tools to

ultimately simplify your life, may seem quite daunting at first. But you will find that it will be well worth your while to spend the

time up front to gain efficiency and speed across disciplines as the project progresses.

Bridging the Gap Between
Dev and Ops

 

At this point, you should be clearly seeing a

shift in your culture towards shared

responsibility and deep collaboration. The

Product teams are collaborating with

Development teams, Development teams

are collaborating with QA and Operations

teams, and all teams are operating at the

same cadence (Agile).

But why does it still takes so much time to

see the features and software that the

teams have been working on? Because you

need to focus attention on automation.

Therefore, the next big step of DevOps is to

start leveraging the tools you’ve chosen to

automate as many of the manual tasks your

development team executes as possible.

Especially because these tasks are prone to

error. Truthfully, most people already think

of this step when they think of the term,

‘DevOps’, and they would be (partially) right.

While DevOps is MUCH bigger than this,

Automated Software Delivery is a very

crucial part.

It's all about ensuring that as soon as any

code is written and pushed to a repository, it

will automatically be built and released to an

environment that stake-holders can access.

Gone are the days where it takes an army of

coders and operations specialists hours, if

not days, to ship working software. This

allows your teams to focus on delivering

immediate business value that stakeholders

can view right away, and not get caught up

in the mundane, error prone, time

consuming job of building and releasing

software.

Consider it the heartbeat of your software. A

healthy heartbeat is consistent and

continuous. However, if the heartbeat stops

(i.e. build breaks, release breaks), it is an

indication that something is wrong, and

must be addressed immediately.

Automated Software Delivery allows you to

iterate and respond quickly, since you will

know early and often if your software is

working properly or not, and in the spirit of

Shared Responsibility, allows all teams

outside of development to view the

software and provide feedback early.

Take comfort that it is now all automated!

Automate Your Project’s
Software Delivery

3

Bridging the Gap Between
Dev and Ops

 4

Having automated your builds and releases is a

huge accomplishment in and of itself. It will

allow you to iterate and deliver quickly.

However, if your software is riddled with issues

that negatively impact its usage, it does not

matter how quickly you deliver software.

We all know that software, no matter how great

it is, will always have problems. However, our

obligation to our customers is to ensure that

the software we provide has as little problems

as possible, especially in the most critical

portions of the software. Traditionally, there

would be QA (Quality Assurance) teams who

would exhaustively test the software after it is

developed to ensure a quality release. While this

is still very relevant, QA teams are still prone to

human errors and depending on how large your

software is, may take a lot of time, thus holding

up your time before going to market.

Automated Quality is all about mitigating these

barriers by introducing automation into the QA

process. Before any QA team members even get

their hands on the release, Automation would

have automatically caught as many potential

issues as possible, and the development team

can start addressing the issues. This allows

more test coverage of the software and quicker

time to market, as issues are found early and

often via automation. This also frees up your QA

team to focus on other critical parts of the

software and provide deeper coverage where

automation may not be able to handle as easily.

DevOps strives to achieve this by putting focus

on automating the quality of your software so

that your feedback loop of issues is MUCH

shorter, and is shared by all. Automating your

quality will take time and collaboration, and is

an ongoing process. There are a number of

ways to automate quality, and they can be

Automated
Quality

We all know that
software, no
matter how
great it is, will
always have
problems.

Bridging the Gap Between
Dev and Ops

Bridging the Gap Between
Dev and Ops

 

injected in various steps in your development cycle. Some of the

more common techniques used to Automate Quality are:

implementing proper unit tests, integration tests, UI automation,

API Automation, performance tests, processes to properly prioritize

issues, constant feedback loop. Picking which of the techniques to

use and how to implement them also depends on your team and the

complexity of your software system.

DevOps’ Automated Quality helps navigate you through this web.

Combined with automated builds, we can now also automatically

run many of these tests so that issues are automatically found

earlier in the cycle, allowing your teams to respond and improve

quickly and iteratively.

Bridging the Gap Between
Dev and Ops

 5

At this point, your teams should be humming

right along. With quality software being

delivered early and often, you are ready to

release your software into the wild!

But the wild is a scary place. Regardless of all

the research and testing you ran, users will

potentially be doing things in your software

that you could have never anticipated. You

need to know when issues of varying topics in

the wild arise, or what users are doing, and

how it is affecting your system.

Since responsibility for quality is now shared,

thanks to DevOps, teams can now collaborate

to choose the proper tools to expose the

appropriate metrics for the organization to

ensure that the software is truly healthy. You’ll

want to monitor activities such as:

Monitoring and
Health Checks

Traffic - How much traffic is

being driven to your

software? How many users

do you have and how long are

they using your software?

Are there any peak hours

where your traffic is high and

you need to scale? Traffic

monitoring will allow you to

answer these questions and

address them accordingly.

Application logs -

Application logs are used

internally, and allow your

DevOps teams to capture

information about the system

that are specifi c to the

software itself. This allows

teams to easily troubleshoot

issues as they arise.

Unusual activity - You will

always want to know if there

is activity on your software

that is out of the norm. This

could indicate a number of

things including, issues in

your software or an attack on

your system. You will want to

address these right away

depending on the severity.

Spikes in certain calls -

Similar to monitoring traffic, if

there are spikes in certain

calls in your application, you

may want to alert your team

right away to be on alert and

monitor the calls in case any

action needs to be taken.

Spikes generally indicate that

your system is being used

heavily in a certain area, that

may affect things like

performance for your

customers.

High error calls - if your

software is experiencing high

error rates in certain areas, it

could mean disruption for

your customers, which could

have many unintended

consequences. You will want

your team to be alerted in

these situations so they can

run a Root Cause Analysis to

see where the issue may be.

This monitoring provides yet another feedback loop where teams can now easily

identify trends and issues, and start preparations to address them in future releases.

Bridging the Gap Between
Dev and Ops

 6 The Wrap Up (…and
Roll Out!)

As is with maintaining your home, it never ends. These steps provide you with a framework on

which to build. You now have all the fundamental pieces to deliver quality software in a timely

manner within a collaborative and efficient environment. But it does not end here. DevOps is a

journey, not an end destination. DevOps is a continuous loop of "rinse and repeat" throughout

your development cycle, and you’ll see the most success by looking for ways to improve and

optimize the process each time, whether it's adding a new tool or completely changing the way

you perform a set of tasks. But, if it is implemented and integrated within your culture, we are

confident you will see an increase in collaboration and productivity in your teams, and will realize

a faster time-to-market with better quality.

About nimBOLD

Great goals and ideas are just that—goals and ideas—until they’re accomplished. Until you cross

the finish line, you’re just racing. nimBOLD exists to take your ambitions and turn them into

accomplishments.

Our motto is “start with a finish.” That means that we begin every project by clearly defining the

end goal. We also believe that the shortest distance between an idea and its completion is a well-

crafted strategy. Once the destination is clear, we then create a plan to ensure that every single

action taken is an action towards achieving your goal. There are no superfluous tasks, trials, or

talks. We live and breathe maximizing efficiency and minimizing time and cost.

Bridging the Gap Between
Dev and Ops

If you’re lacking a clearly-defined goal, we
can help you uncover it.

If you’re searching for a way to make
progress towards that goal, we can be your
catalyst.

If you want to up your game and learn how
to define goals and complete complex
projects like a pro, we can be your guide.

CONTACT US

riad.bacchus@nimbold.com

(714) 931-3985

